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Reaction, Trapping, and Multifractality in 
One-Dimensional Systems 

C. V a n  den Broeek 1'~ 

In the first part of this paper, we present two variants of the A + A ~ A and 
A + A ~ P reaction in one dimension that can be investigated analytically. In 
the first model, pairs of neighboring particles disappear reactively at a rate 
which is independent of their relative distance. It is shown that the probability 
density ~0(x) for a nearest neighbor distance equal to x approaches the scaling 
form cp(x)~cexp(-cx/2) / (cx)  m in the long-time limit, with e being the con- 
centration of particles. The second model is a ballistic analogue of the coagula- 
tion reaction A + A--. A. The model is solved by reducing it to a first-passage- 
time problem. The anomalous relaxation dynamics can be linked in a direct way 
to the fractal time properties of random walks. In the second part of this paper, 
we discuss the complications that arise in systems with disorder. We present a 
new approach that relates first-passage-time characteristics in a one-dimensional 
random walk to properties of random maps. In particular, we show that Sinai 
disorder is a borderline case for the appearance of multifractal properties. 
Finally, we apply a previously introduced renormalization technique to 
calculate the survival probability of particles moving on the line in the presence 
of a background of imperfect traps. 
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1. I N T R O D U C T I O N  

T h e  c lass ica l  r a t e  l aws  for  c h e m i c a l  k i n e t i c s  c a n  o n l y  be  e x p e c t e d  to  a p p l y  

in  t h e  case  t h a t  t h e  r e a c t i o n s  d o  n o t  s t r o n g l y  d i s t u r b  t he  s t a t e  of  l oca l  equ i -  

l i b r i u m .  Recen t ly ,  t h e  d e v i a t i o n s  f r o m  c lass ica l  r a t e  l aws  h a v e  b e e n  s t u d i e d  

in  d e t a i l  for  d i f f u s i o n - l i m i t e d  b i n a r y  r e a c t i o n  s c h e m e s  (1 25) s u c h  as 
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A + T --* T (trapping problem), A + A --* A (coagulation problem), and 
A + A --* P and A + B ~ P (annihilation problems). In these models, the 
stationary state is a highly nonequilibrium state, corresponding to the 
absence altogether of any particles. As this state is approached in the long- 
time limit, nonequilibrium correlations build up, and possibly extend over 
an infinite range. As a result, the probability for a chemical encounter 
between two particles depends on the microscopic structure, i.e., on the 
specific form of the long-range correlations. In fact, the very existence of 
rate laws, with only the rate constants being determined by the microscopic 
structure, is no longer guaranteed. The existence of long-range correlations 
was also reported some time ago for the case of chemical reaction with a 
high activation barrier, although the range of these correlations remains 
finite and classical rate laws still apply. (26) 

In the first part of this paper (Sections 2 and 3), we present two 
variants of the A + A ---, A and A + A ~ P reaction in one dimension that 
can be investigated analytically. In the first model, pairs of neighboring 
particles disappear reactively at a rate which is independent of their relative 
distance. It is shown that the probability density ~0(x) for a nearest 
neighbor distance equal to x approaches the scaling form ~0(x)~ 
c e x p ( - c x / 2 ) / ( c x )  1/2 in the long-time limit, with c being the concentration 
of particles. The second model is a ballistic analogue of the coagulation 
reaction A + A ~ A. The model is solved by reducing it to a first-passage- 
time problem. The anomalous relaxation dynamics can be linked in a direct 
way to the fractal time properties of random walks. 

In Section 4, we show how a previously introduced renormalization 
technique can be used to calculate the survival probability of particles 
moving on the line in the presence of perfect traps and a background of 
imperfect traps. 

Finally, in Section 5, we discuss in detail the first-passage-time charac- 
teristics in a one-dimensional random walk with disorder. It has been 
suggested that multifractal properties have to be invoked to understand, 
for example, the growth probability in diffusion-limited aggregation. We 
present a new and elegant approach that allows to discuss in detail the 
origin of multifractality in the much simpler situation of a one-dimensional 
random walk with (quenched) disorder. In this case, the probability for a 
walker to reach its next nearest neighbor is a random variable. We show 
that Sinai disorder is the borderline case separating the types of disorder 
for which first passage is a certain event and those for which the first 
passage probability is no longer equal to 1 (with probability 1), but 
displays multifractal properties. 
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2. I N T E R C H A N G E  REACTIONS IN ONE D I M E N S I O N  

2.1. Single-Part ic le  Annih i la t ion 

It is well known that a random distribution of points on a line is 
characterized by an exponential probability density ~o(x) for the distance x 
between neighboring particles, (27) 

~ ( x )  = ce -cx  (2.1) 

where c represents the concentration of the particles, which is also equal to 
the inverse of the average distance between the particles, c =  ( x )  1. 
Moreover, the distances between different pairs of particles are independent 
random variables. One way to generate such a random distribution is to 
add particles, one by one, at random locations on the line. The question we 
will address here is what happens if we do the reverse, i.e., if we eliminate 
randomly chosen particles. This elimination can be viewed as the result of 
a "chemical reaction" or "decay" of the particles under consideration. Since 
the elimination of a certain number of particles can be viewed as the 
previously mentioned process of adding particles at random locations, but 
terminated at an earlier time, we expect that an exponential density will 
prevail. We now proceed to show under which conditions this is indeed the 
case. 

We consider a distribution of points on the line with a given proba- 
bility density qo(x, t = O) for the distance x between neighboring particles 
at time t =0.  Moreover, we assume that the distances between different 
neighboring pairs of particles are independent random variables at t = O. 
We now let single particles disappear at a constant rate R, and study the 
evolution of the interparticle distance density q~(x, t). A first observation is 
that the distances between different pairs of particles remain independent 
random variables, characterized by a common probability density q~(x, t) 
at time t. The equation of evolution for q~(x, t) can be derived as follows. 
At time t + dt, we pick at random a particle, and calculate the probability 
~o(x, t + dt)  that its right nearest neighbor lies at a distance x. This can be 
realized, to lowest order in dt, in two different ways. Either the nearest 
neighbor at time t was at the distance x, and was not removed in the 
time interval dt, or the nearest neighbor at time t was removed in the time 
interval of length dt, but the next nearest neighbor was at a (total) 
distance x. We thus obtain 

qo(x, t + dt)  = R dt f o  q~(x', t) ~p(x - x ' ,  t) dx '  + qo(x, t)(1 - R dt)  (2.2) 
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o r  

Otcp(x , l)=- R Ifo~CP(X ', t) qg(x-- x', t) d x ' - q ~ ( x ,  t ) l  (2.3) 

By introducing the spatial Laplace transform 

Co(s, t) = e-SX~o(x, t) dx  (2.4) 

one can easily solve this equation. The solution reads 

1 il 1 ~(s, t) ~(s, t = 0  

Based on this exact result, the following conclusions can be drawn: 

o r  

If the initial density is exponential, 

~o(x, t = O) = c(t  = O) e-o( ,  = o)x 

(1) 

(2.6) 

1 
q3(s, t = 0) - (2.7) 

1 + s / c ( t  = O) 

then it remains so for all times: 

with rate equation 

then 

~o(x, t) = c( t) e o(t)x (2.8) 

~,c = - R c  (2.9) 

If the initial density has a finite first moment 

f/ ( x ( t = O ) ) = c  l ( t = 0 ) =  x q g ( x , t = O )  d x < o o  (2.10) 

(2) 

Hence, 
limit. More precisely, one has that [cf. (2.5) and (2.10)] 

~(s, t = 0 ) =  1 - s / c ( t = 0 ) +  . . .  (2.11) 

the density approaches an exponential density in the long-time 

1 
lim Co(sc(t), t ) -  (2.12) 

t--, oo l + s  
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with 

c(t)  = e -  R'c(t = O) 

In real space, one has the following scaling result: 

(2.13) 

~o(x, t) ' ~  c(t) e - '")~ (2.14) 

In this sense, the exponential density is the attractor of all densities with 
finite first moment under the procedure of removing randomly chosen 
single particles. 

(3) If the initial density is characterized by a fractal dimension 
0 < ~ < 1 ,  i.e., 

~b(s, t = 0) = 1 - s ~ (2.15) 

(where we have chosen the coefficient of s ~ equal to 1, for simplicity) it 
follows that 

1 
lira O(sc(t)  1/~, t ) =  (2.16) 
t ~  1 + s  ~ 

The scaling form that is reached for large times is thus determined uniquely 
by the fractal dimension c~. For ~ = 1/2, the following explicit result is 
found: 

(p(x , t )  .~ l_--~x 3 - c ( t ) e C ~  1/2} (2.17) 

2.2. Neares t -Ne ighbor  Particle Annihi lat ion 

It is well known that diffusion-controlled reactions in low-dimensional 
systems can be characterized by anomalous reaction kinetics. For example, 
the reactions A + A  ~ A  or A + A  ~produc t s ,  where the A particles 
perform Brownian motion on the line and react when they touch, lead to 
the following long-time behavior of the concentration of A particles: 

c(t).,~ t -1/2 (2.18) 

This result has to be contrasted with the c ( t ) ~  t -1 that would follow from 
a classical kinetic rate equation 8 , c = - c  2. The slower decay seen in 
Eq. (2.18) can be explained by the fact that the reaction produces a self- 
ordering in the positions of the particles of the following type(m): 

7~ 2 - -~[c( t )x]2 /4  (2.19) (p(x, t) = -~ c ( t)  xe 
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In some problems, particles can annihilate via long-range interactions, such 
as exchange interactions, even in the absence of particle motion. In this 
case, an exact analytic treatment is difficult. The problem becomes trac- 
table if we assume that particles react only with their nearest neighbors, 
and that the probability of reaction is independent of the relative distance 
of the reacting pair. We also assume an initial distribution of particles on 
the line, with identical independently distributed distances between the 
successive pairs, with density ~o(x, t =0).  Neighboring particles can react 
and disappear at a constant rate R. An equation of evolution for q~(x, t) 
can now be derived along the same lines as those followed in the previously 
discussed single-particle annihilation. One finds [compare to Eq. (2.3)] 

E;o ] Otq)(x, t) = R d x '  dx"  q~(x', t) p ( x " ,  t) q)(x - x '  - " x ,  t ) -  ~o(x, t) 

(2.20) 

This equation can again be solved by spatial Laplace transform, and one 
finds 

1 e 2 m l l  1 1 (2.21) 1 ~2(s, t ) -  (~2(s, t=0)  

The following conclusions can be drawn: 

(1) If the initial density q0(x, t = 0 )  has a finite first moment, the 
distribution converges to the following attractor [-compare to (2.11)]: 

1 
lim gp(sc(t))  (1 +2s)  1/2 (2.22a) 

t ~ o ~  

with 

or, in real space, 

c( t )  = e -2R ' c (O)  (2.22b) 

' ~ ~ F c( t ) 71/e e c(,/x/2 (2.23) 
~p(x,t) ~ LercxJ 

Note the (normalizable) divergence of ~0 for x-+0.  This small x 
dependence implies that the probability to find a nearest neighbor in the 
interval ]0, x],  given that a particle is located at zero, is proportional to 
x / c x  for x ~ c-  1 (if such a behavior were true for all x, one would have a 
fractal with dimension 1/2). 
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(2) The attractor corresponding to initial densities with fractal 
dimension e is 

1 
tlim~ (o(sc( t) 1/~, t) ) - (1 + s~) ~/2 (2.24) 

It is straightforward to generalize the above results to the case of n-nearest- 
neighbor annihilation. The attractor for initial densities with a finite first 
moment is then 

1 
lira ( o ( s / ( x ( t ) ) )  (1 + n s )  ~/n (2.25) 

t ~  

with 

c(t) = e-nine(0) (2.26) 

and in real space 

e c(t)x/n 

q~(x, t) = c(t) r (1 /n )  n l / " [c ( t ) x]  (" 1~/, (2.27) 

We note that the above type of dynamics leads to strong nearest neighbor 
correlations, even though next nearest correlations are absent and even 
though the rate equation is linear in c. 

3. F I R S T - P A S S A G E - T I M E  A P P R O A C H  TO 
O N E - D I M E N S I O N A L  BALL IST IC  M O D E L S  

A ballistic analogue of the annihilation kinetics A + A--+ product was 
introduced and solved by Elsken and Frisch. (12) In this model, particles 
move along the line with velocity + v or - v ,  and annihilate upon collision. 
When both types of particles occur with the same probability p = q = 1/2, 
and the initial distances between neighboring particles form a renewal 
process with finite average distance, the concentration of A particles goes 
down asymptotically as t-1/2. This can be explained by a central limit type 
of argument, similar to the one used for explaining the anomalous behavior 
in the A + B--+ product: after a time t, particles cover a distance of the 
order of t. However, the number of particles with velocities + v and - v on 
an interval of length order t will not match exactly, because of fluctuations 
that are of order x/c t ,  where c is the concentration of particles. The par- 
tides that happen to be in the majority survive, so that, after time t, the 
number of particles is reduced from order t to order ,,/t. In ref. 24 we 

822/65/5-6-10 
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presented a ballistic analogue of the reaction A + A --, A. The particles can 
now have a velocity +v  (probability p), - v  (probability q), or velocity 0. 
Upon collision of two moving particles, a stationary particle is produced, 
while stationary particles are annihilated upon collision with a moving 
particle. This model gives results similar to the A + A ~ product model 
when p = q, but the approach of the stationary state is dominated by the 
immobile particles for p r q. We illustrate how both models, and possibly 
more complicated ballistic models, can be solved in an elegant way by 
mapping them to a first-passage-time problem for a discrete-time random 
walk. To illustrate the idea, we concentrate on the simplest case of the 
annihilation kinetics A + A --. product. More details can be found in ref. 24. 
Consider a particle that is moving to the right. To find its survival time, 
one has to locate its collision partner. This can only be a particle at its 
right-hand side that is moving to the left. It can be identified by the 
following mapping to a random walk problem. We consider a random 
walk on the integers, starting at lattice site 1. We consider the subsequent 
neighbors n = 1, 2,... to the right of the particle under consideration, n plays 
the role of the discrete-time variable of the random walk. When the nth 
neighbor is moving to the right, we take, at time n, a random walk step 
away from the origin. This happens with probability p. When the n th 
particle is moving to the left, we are "coming closer" to the collision 
partner, and we take a step toward the origin. The probability is q. The 
collision partner will correspond to the time step at which the origin is 
reached for the first time. The elapsed time is then equal to the relative 
distance between the two particles, divided by the relative velocity 2v. If the 
distances between successive particles is characterized by a renewal process 
with finite average value, we conclude that the survival time is essentially 
determined by the first passage time for the random walk to go from 1 
to 0. For  unbiased random walks, it is known that the first passage is a 
certain event (cf. Section 5). We conclude that in this case, all the particles 
will ultimately disappear by a reactive collision. However, the first passage 
times form a fractal time process with fractal dimension 1/2; the probability 
that a first passage time exceeds t decreases as t-t/2. We thus recover the 
above-cited anomalous decay rate of t-1/2, but it is now explained in terms 
of first-passage-time statistics, and similar in spirit to the arguments 
explaining the behavior in the diffusion-limited A + A ~ A model. ~176 When 
p > q, not all the particles moving with velocity + v decay: a first passage 
from 1 to 0, with a bias p > q away from the origin, is no longer a certain 
event; rather, it occurs with a probability equal to ( 2 p -  1)/p. On the other 
hand, the particles moving with - v  velocity are annihilated exponentially 
fast, since they are performing a biased random walk biased toward the 
origin. The fractal nature of the decay process is thus destroyed when p r q. 
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4. R E N O R M A L I Z A T I O N  OF C O N T I N U O U S - T I M E  
R A N D O M  WALKS,  I N C L U D I N G  TRAPPING 

In this section, we show how a renormalization approach that was 
formulated for continuous-time random walks on regular and fractal lat- 
tices(Z8 31) can also be used to study the effect of trapping. More precisely, 
it allows one to calculate the survival probability for a particle performing 
a random walk on the line in the presence of both perfect and imperfect 
traps. The imperfect traps are supposed to form a uniform background, 
characterized by a trapping probability density, that is translational 
invariant. The perfect traps delimit the region inside which the particle can 
move without being trapped instantaneously. 

We start by deriving the survival time in the absence of perfect traps. 
The continuous-time random walk is characterized by two probability den- 
sities r and ~p(~). Here r stands for the probability density that the 
particle jumps to a new site after spending a time ~ on a given site, while 
~o(~) is the probability density that the particle is trapped after a time v on 
a given site. At least one of these events takes place at a certain time ~ >/0; 
hence 

f :  [ r  + q)('c)] & =  1 (4.1) 

Let r denote the probability density that a particle is trapped after a 
time t, irrespective of its location on the lattice. By expressing that the 
lifetime of a particle can exceed t by doing so after n jumps, n = 0, 1 ..... we 
find 

(o(,) & = [r  + ,;o('r)] d'c + d'c, r 
n = l  

f ~  -- "~1 . . . .  "on-2 
x -- .  & , , _ ~  O('c,, ~) 

x d~,, [ r  + ~ ( % ) ]  (4.2) 
- - ' e l  . . . . .  ~ n - I  

By Laplace transformation, we conclude that 

~(s )=  ~(s) (4.3) 
1-~(s) 

Note that this result does not depend on the geometrical structure of the 
underlying lattice. 
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The survival time in the presence of a perfect trap can be calculated 
using a renormalization procedure. We first consider the simple example of 
a directed one-dimensional walk (see Fig. la), starting at the origin i =  0. 
Here $o(~) stands for the probability density to jump from a given site i to 
its right nearest neighbor i +  1, while ~o0(z ) is the probability density for 
trapping at site i. We now decimate every other site, starting with site 1, 
and calculate the renormalized quantities $1(T) and q~(,). Clearly, the 
probability density $lCt) to go from site 0 to 2 in a time t is given by 

~9t(t)= $ o ( ~ ) $ o ( t - z ) &  (4.4) 

o r  

/}l(s) =/}o2(S) (4.5) 

On the other hand, ~ot(t ) is the probability density that trapping occurs at 
site 0 or 1; hence 

;o (Pl( t )  = (Po(t) + ~to('C ) ~Oo(t - z)  dr (4.6)  

o r  

01(s) = qS0(s)[1 + ~o(S)] (4.7) 

The same decimation procedure can now be repeated over again, and the 
renormalization equations, linking the densities q/, and ~o, after n decima- 

v 

. . . .  : - - - i c v  . . . .  

q~O q' 1 % 

(a) 

Fig. 1. 

112 RIO 112 l [ ~ / 2  112 ~I 1/2 

*0 91 tPn 

(b) 

Decimation procedure for (a)a directed random walk and (b)a  nearest neighbor 
random walk. 
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tions, to those after n - 1  decimations, namely ~n_ i and ~0~_ 1, are given 
by 

{}, = {}2_ 1 (4.8a) 

O~ = On_~[1 + {},,_1] (4.8b) 

For convenience, we are not explicitly indicating the s dependence. Note 
that these equations preserve normalization, since {}n l ( s = 0 ) +  
~ n _ l ( s = 0 ) = l  implies that { } n ( s = 0 ) + q a . ( s = 0 ) = l .  Also, these renor- 
realization equations can easily be solved by iteration. One finds 

{}, = {}2. (4.9a) 

{}~=q3 o f i  (1 +{}~k-~)=Oo 1-{}2-------" (4.9b) 
k=l 1 --{}0 

In particular, it follows from (4.9b) that if I{}o(S=0)l < 1, i.e., the proba- 
bility for hopping is not equal to one, then 

(PO lim ~,~= ...... (4.10) 
n~oo 1 --~o 

which is in agreement with the general result give in Eq. (4.3). Note also 
that P ,  = {}n(s= 0) is equal to the probability that a particle has reached 
the site at a distance L = 2 n from the origin. From Eq. (4.9), we find that 
this probability decreases exponentially with the distance Pn ~ exp( -L /Lo)  
with effective trapping length L0 = -1 / ln  P0- 

Let us now turn to the case of a nearest neighbor random walk in one 
dimension (see Fig. lb). The probability density to jump from a given site 
to a specified nearest neighbor at time r is now equal to Oo(Z)/2. The 
particle starts at the origin. By decimating all uneven-numbered sites, one 
obtains the following renormalization equations: 

{}n {}21 
2--{} 2 1  

(4.11a) 

1+{}n-1 
q3n = 2~n 1 - -  (4.1 lb) 

2 -{}  2 , 

The solution of recursion relation (4.11a) is well known(29): 

1/{}n = cosh [2 ~ arccosh(I/{}0)] (4.12) 
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while iteration of (4.11b) yields 

~-1 1+{~ k 
(}~=qSo [ I  2 - -  (4.13) 

~=o 2 - ~ 2  

By substituting the result (4.12) for ~k, we get an explicit, albeit com- 
plicated expression for ~5, in terms of ~o and ~o- Furthermore, one can 
show that 

(PO lim ~ . =  (4.14) 
" ~  1 -{~o 

which is again in agreement with Eq. (4.3). 
By setting s = 0  in Eq. (4.12), we obtain the following result for the 

probability Pn of reaching one of the sites at 2 n or - 2  n, before trapping 
( L =  2~): 

1 
Pn = e-L/c~ (4.15) 

cosh[2 n arccosh(1/Po)] 

with effective trapping length Lo = 1/arccosh(1/Po). 
The above procedure can also be applied in more complicated cases, 

such as biased random walks or random walks on fractal lattices. (29-31) 

5. M U L T I F R A C T A L I T Y  OF T H E  ESCAPE P R O B A B I L I T Y  
IN A O N E - D I M E N S I O N A L  R A N D O M  W A L K  

When we drop the condition of translational invariance, the previous 
renormalization approach becomes impractical, at least for an analytic 
treatment. The trapping probability density at site i now depends on the i, 
q~ = (Pi, while one has to distinguish the jump probability densities ~+ and 
~ i  to go from site i to i +  1 or i -  1, respectively. However, it is possible 
to make some progress using a renormalization approach, similar in spirit 
to the one presented above, by concentrating on the first-passage-time 
density F~+(t) to go from site i to site i +  1 for the first time at time 1. (31-33) 

A first passage from site i to site i + 1 can be realized by a number n of 
excursions to i -  1, n - -0 ,  1, 2 ..... each followed by a first passage back to i, 
and finally by a jump from i to i + 1. In terms of Laplace transforms, one 
obtains the following result: 

P2 = Z ( TPT-,r 7- (5.1) 
n = o  1 - -   iFL1 
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In the following, we will concentrate on just one feature of the first passage, 
namely the probability P i =  _~+(s = 0) that it ever takes place. We intro- 
duce the notation p i = ~ + ( s = 0 ) ,  q~=i~i(s=0),  and r i = ~ i ( s = 0 )  to 
designate the probabilities to jump to i + 1, i -  1, or to the trapping state 
from site i. By setting s = 0 in Eq. (5.1), one obtains the following recursion 
relation: 

Pi P~ (5.2) 
1 - q i P i - 1  

For the case of a translational invariant system, p i = p  and qi=q,  it 
is straightforward to find the stable fixed point P*, 0~<P*~< 1, of the 
recursion relation (5.2), namely 

1 - ( 1 - 4pq)1/2 
P* - (5.3) 

2q 

The following exact solution of Eq. (5.2) describes the approach to the 
fixed point P*: 

1 - -  ~ ( ( q / p ) b ' 2  p,)2n 
Pn = P* (5.4) 1 - o~((q/p) 1/2 P*)2~ + 2  

where c~ is determined by the "initial" condition, namely the value of Pn at 
one of the previous sites, e.g., site n = 0: 

Po = P *  1 - c~((q/p) 1/2 p , ) 2  (5.5) 

Note that an absorbing boundary condition Po = 0 implies that e = 1. 
Pn stands for the probability of ever reaching site n + 1, starting from site 

n. The probability Pn.n+i for ever reaching site n + i, starting from site n, 
is given by 

P n , , , + i = P , ~ P n + l P n + i  1 (5.6) 

Hence 

1 - c~((q/p) 1/2 p,)2n 
Pn.n +, = (P*)~ 1 --  o~((q/p) 1/2 P *  )2n + 2i (5.7) 

In the absence of trapping (p  + q = 1), one has that 

p .  1 - - ( 1 - - 2 p )  ~ p / ( 1 - - p ) ,  p < ~ l / 2  

2(1--p)  ~1, p~> 1/2 
(5.8) 
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If, in addition, one considers the case of an absorbing boundary condition 
( P o = 0  or o~= 1), Eq. (5.7) reduces to 

1 - (q/p)" 
P " ' + ' -  1 - (q /p )"+ '  (5.9) 

a well-known result from the gambler's ruin problem. (27) Note that 
Eq. (5.7) includes the~effect of trapping ( p + q <  1) and of an imperfect 
absorbing boundary (Po > 0). 

The abrupt transition, induced by a bias, on the probability of first 
passage [cf. Eq. (5.8)], is well known. (z7) In terms of the map (5.2), this 
transition can be viewed as a transcritical bifurcation at the value p = 1/2; 
see Fig. 2a. For values ofp  > 1/2 the fixed point P* = 1 is stable, for p < 1/2 
it is unstable, while at the critical point p = 1/2 it is marginally stable. This 
explains the "critical" behavior given in Eq. (5.8). Moreover, Eq. (5.4) takes 
the following form at the critical point p = 1/2: 

p ,  = Po + n ( 1 -  Po) 

1 +n(1 - P o )  

P* / 1/ 
a.p 

1/'2 1 

p* 

1 

mulfifractal 

(a) 

o 

(b) 

Fig. 2. 

( 5 . 1 0 )  " 

The bifurcation diagram for the probability for first passage P*, in the absence of 
trapping (p + q = 1), for the case (a) without and (b) with disorder. 



Reaction, Trapping, and Multifractality 985 

One observes that the approach of Pn to the fixed-point solution P* = 1 is 
no longer exponential in n, but rather goes as an inverse power law 
Pn~ 1--1/n, for n large. In this sense, the system displays long-range 
spatial correlations at the "critical point" p = 1/2. 

By comparing Eqs. (5.1) and (5.2), we note that, in the simple case of 
a translational-invariant system 5 + = ~ = ~, the recursion relation for Pn 
and F+ have an analogous form. The solution for the recursion relation 
(5.1) is thus given by [compare to Eqs. (5.4) and (5.5)] 

with 

~,2 ~_~, , 1--O~[(~I--/@ +)I/2 T'*] 2n 
1 - - ~ [ - ( ~ - - / 5  + ) 1 / 2 ~ * ] 2 n + 2  

(5.11a) 

p .  = 1 - ( 1 - 4 5 + ~ - )  t/2 
(5.11b) 

2 ~ -  

where the value of c~ is again determined by the boundary condition, 
namely by the function Fi at a boundary site i. 

We now turn our attention to the case of a random system. For 
simplicity, we restrict ourselves to the case of uncorrelated binary disorder. 
At each site i, the jump and trapping probability are either Pl,  ql, and rl 
or P2, q2, and r 2 (with P i+  q i+ r i=  1 for i =  1 or 2), with respective proba- 
bility H1 and H2, and this independent of the state of the other sites. 
For  example, the system can consist of a random alternation of sites with 
Pl = q 1 = 2 / 5 ,  rl = 1/5 and p2=q2  = 12/25, r2 = 1/25 (these are random, 
but symmetric rates). In Fig. 3, we have plotted the two mappings [cf. 
Eq. (5.2)], that correspond with each type of site. The question we raise is 
what will be the values of the escape probability Pi that one observes in the 

Pi 

Fig. 3. 

P2 

Pl 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ P2 

." ] Pl 

-*" I 

0 P'~ p~ 1 
Pi-t 

The two mappings, corresponding to the case of binary disorder Pl ,  ql and P2, q2, 
given by Eq. (5.2). 
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limit of an infinite system i ~ ~ .  In a "pure" system consisting of sites of 
type 1 or 2 only, Pi converges to the corresponding stable fixed points P~ 
and P*, as we discussed above. In the random system, however, a new 
value Pi+ 1 will be generated closer to either one of these fixed points, 
depending on the type of the site encountered. As a result, the escape 
probability Pi itself becomes a random variable, characterized by an 
invariant measure or probability density with a support located between 
P* and P*. In Fig. 4a, we have plotted a typical probability profile corre- 
sponding to the case of symmetric disorder, namely Pl-=ql  =2/5  or 

(a) 

L 

(b) 
Fig. 4. The histograms of the multifractal probability density corresponding to the site 
disorder (a)p=q=2/5 or p=q= 12/25 and ( b ) p = 3 / 5 ,  q = 2 / 5  or p =  1/5, q=4/5 ,  with an 
accuracy of 216 cells. 
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P2 ----- q2 = 12/25 (with H I = H 2 = 1/2). The probabi l i ty  density is of a multi-  
fractal nature. (34-38) The  generalized dimensions  Dq are given in Table  I. 
These results are obta ined  using the me thod  of t ransient  chaos. 3 Fo r  com- 
parison, analytic results are included for the case of the two-scale Can to r  
set, obta ined  by replacing the mappings  by their tangents  in the respective 
fixed points. In  this case, the generalized dimensions Dq are the solution of 
the following t ranscendental  equat ion:  

r~ 1 r162 (5.12) 

where r I and  r 2 are the slopes of these linear mappings  (also called the con- 
t ract ion rates(35)). The above  case is an example  of a thin fractal, with a 
fractal support .  It  is also possible that  the probabi l i ty  profile is a fat fractal, 
whose suppor t  is the whole interval between P *  and P *  (see below). 

In the absence of t rapping,  P i + q ~ =  1, several cases can be dis- 
t inguished according to the value of ( ln  pjq~). When ( ln  pjq~)> 0, it is 
easy to verify that  Pi will converge to 1 with probabi l i ty  1, i.e., first passage 
is a certain event. For  ( In  pjqg)< 0, one gets a fat mult ifractal  spectrum, 
of the type represented in Fig. 4b (corresponding to the case p l  = 3/5; 
ql = 2/5 or  P2 = 1/5; q2 = 4/5). The  case of Sinai disorder,  (41) defined by the 
p roper ty  tha t  (ln(pjq~))=O [ and  (ln2(pjqi))<oe], lies at the border-  

3 Data kindly provided by T. Tel. 

Table I. The Generalized Dimensions Dq for the Case Pl = ql = 2/5 and 
P2 = q 2  = 12/25, Obtained from the Solution of the Transcendental 

Equation (5.12) ,  Corresponding to the Two-Scale  Cantor Approximation,  
and Using the Method of Transient Chaos a 

q Cantor approximation Transient chaos 

- 10  1 . 0 9  1 . 0 9  

- 8 1 . 0 7  1 . 0 7  

- 5 1 . 0 0  1 . 0 0  

- 2  0.87 0.84 
--1 0.81 0.77 

0 0.75 0.71 
1 0.71 0.67 
2 0.67 0.64 
5 0.60 0.59 
8 0.56 0.56 

10 0.55 0.55 

a Data kindly provided by T. Tel. 
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line of these two situations. It was shown by Sinai that the mean square 
displacement grows very slowly with time, <x2(t)> ~ l n  4 t, in contrast to 
the normal diffusive behavior that is observed for the case of random but 
symmetric rates. To illustrate the properties of P*, we consider the case of 
binary Sinai disorder, i.e., the jump probabilities to the left and the right 
at a given site are equal to p and q or q and p, with equal probability 
(H1 =/12 = 1/2). For  the mapping with a bias toward the right (p > q), the 
stable fixed point Js P* = 1. In the vicinity of this fixed point, both 
mappings can be written in the following form: 

l n ( 1 - P J = l n ( 1 - P ~  ~)• (5.13) 

In other words, the logarithm of the deviation from the fixed-point value 
undergoes an unbiased Brownian motion. On the other hand, it is easy to 
verify that the motion in the vicinity of the stable fixed point P*, associated 
to the mapping p < q, is biased away from the latter. We conclude that Pn 
will converge after a large number of iterations to the final attractor 
P*  -- 1. The probability density for P* no  longer has a multifractal profile, 
with a support located between the two fixed points, but rather it is a delta 
function centered at P*  -- 1: first passage is a certain event in the case of 
Sinai disorder. In view of Eq. (5.13), the approach to this attractor is not 
exponentially fast, but is expected to go as 

] 
where C is a constant. The above results remain valid in more complicated 
cases of Sinai disorder. We conclude that the first passage from a site to 
one of its neighbors, and hence to any other site, is a certain event in a 
system with Sinai disorder. The corresponding mean first-passage-time 
properties have been studied in detail (see, e.g., ref. 31, and references cited 
therein). 

Multifractal properties, such as the ones observed in the above model, 
are expected to be a general feature of systems in which various forms of 
disorder are present (see also ref. 42). For  example, it is well known that 
random walks are characterized by fractal properties. On the other hand, 
disordered lattices can give rise to fractal features, the percolating lattice 
being a notorious example. The advantage of the above simple model is 
that the multifractal properties can be studied in relative detail, and their 
properties can be linked to the well-documented domain of random 
maps.(35,43, 44) 
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